EveQ
Protecting Network Performance
in the Cloud

Vimal

Mohammad Alizadeh .
Changhoon Kim

Balaji Prabhakar £ Windows Azure
. Albert Greenberg -

David Mazieres

Once upon a time...

15 Apr 2013

Once upon a time...

15 Apr 2013 3

Once upon a time...

" 15 Apr 2013

15 Apr 2013

Performance Unpredictability

Graph (Sun Apr 14 12:43:20 EDT 2013 to Mon Apr 15 14:00:00 EDT 2013):

160
g 10th

. A
140 ms._: 150 median
- mean
120 ms— ms 90th
] 99th
100 mS—_ i
80 ms—
60 ms— \ ean
40 ms— .
: th o~ f Media
Ons—————1—F——
6 AM Noon 6 PM Midnight 6 AM Noon
Sun 4/14 Mon 4/15

http://amistrongeryet.com/op detail.jsp?
op=gae_db readCachedHandles 1&hoursAgo=24

15 Apr 2013 6

99th percentile latency: Who cares?

Web services: each request
touches 10s to 100s of servers

Request "
' Frontend B
Webserver | Internal
| Request/resp.
Response -

Web Response time depends on
the slowest worker.
As N increases, 99 percentile latency really matters

Network Congestion Kills Predictability

Is this how we deal with variability?

Is this how we deal with variability?

mixpanel
® o -

Why We Moved Off The Cloud

The cloud’s intractable problem

... is variable — no, highly variable —
performance.

http://code.mixpanel.com/2011/10/27/why-we-
moved-off-the-cloud/

Give up on cloud,
move to dedicated

15 Apr 2013

10

Is this how we deal with variability?

mixpanel NETFELIX

Why We Moved Off The Cloud 5 Lessons We've Learned Using AWS

... in the Neftflix data centers, we have a high
capacity, super fast, highly reliable

network. This has afforded us the luxury of
designing around chatty APIs to remote

The cloud’s intractable problem

... is variable — no, highly variable —

performance. systems. AWS networking has more variable
latency.
http://code.mixpanel.com/2011/10/27/why-we- http://techblog.netflix.com/2010/12/5-
moved-off-the-cloud/ lessons-weve-learned-using-aws.html
Give up on cloud, Overhaul apps
move to dedicated to deal with variability

15 Apr 2013 11

Congestion is notorious you
when you can’t “see” it

1 Long lived Shared

TCP flow 10G pipe
)
)
I
— .
—_— Switch
—
—
Bursty UDP session:
2.5Gb/s
ON: 5ms
OFF: 15ms

15 Apr 2013

12

Congestion is notorious you
when you can’t “see” it

1 Long lived Shared
TCP flow 10G pipe g~
)
)
| 71Gt '
—-— T B8 tcp
: ©5GH @@ udp -
—_— SWltCh o — total \A/‘A‘\ﬂ/\’v
3Gt '
——
\) 1Gt
Bursty UDP session: 10 15 30 55 30
2.5Gb/s Time (s)
ON: 5ms
OFF: 15ms

15 Apr 2013 13

Congestion is notorious you
when you can’t “see” it

1 Long lived

TCP flow
)

—_— Switch

Shared

10G pipe
)

——/
Bursty UDP session:

2.5Gb/s
ON: 5ms
OFF: 15ms

15 Apr 2013

Rate

9G;

71Gp

3Gy

1Gr
L‘_‘_‘J—L‘_‘_‘J
20.00 20.02 20.04 20.06 20.08 20.1C

5Gy

udp

Time (s)

14

Strawman: Rate Limiting

/ Rate Limit: 2.5Gb/s

Shared Network Capacity (10Gb/s)

e

" Rate Limit: 7.5Gb/s

Strawman: Rate Limiting

/ Rate Limit: 2.5Gb/s

Shared Network Capacity (10Gb/s)

e

" Rate Limit: 7.5Gb/s

15 Apr 2013

Strawman: Rate Limiting

/ Rate Limit: 2.5Gb/s

---------- Shared Network Capacity (10Gb/s)

——
Q:/w

" Rate Limit: 7.5Gb/s

17

Recap...

* Bandwidth contention
— Can occur in a few milliseconds!
— Happens even if tenants don’t talk to each other
— Invisible on 5 minute logs!

e Cannot trust tenants at all

— Easy to grab more bandwidth simply by blasting
traffic (UDP)

* Naive rate limiting not enough
— VMs can gang up and blast traffic

15 Apr 2013

18

Where does Congestion Happen?

Shared

4

N\

4

N\

J

Ideal network fabric
(one switch)

10Gb/s pipe Server

Where does Congestion Happen?

Shared

4)
—

_ J

4)
s

_ J

4)
o

_ J

Ideal network fabric
(one switch)

10Gb/s pipe Server

Where does Congestion Happen?

4)
—

_ J

4)
s

_ J

4)
o

_ J

Ideal network fabric
(one switch)

Shared
10Gb/s pipe Server

Where does Congestion Happen?

Shared

4)
f—

1\ /

4)
f—

1\ /

4)
o

1\ /

Ideal network fabric
(one switch)

10Gb/s pipe Server

l

r—
g—

—

Where does Congestion Happen?

4)
e

_ J

4)
e

_ J

4)
W

_ J

Ideal network fabric
(one switch)

Shared
10Gb/s pipe Server

Congestion Study on Windows Azure

Spine Layer ‘ VI ‘ L/I
\ | eo e j
160Gb/s

Leaf to Spine
Leaf layer

480Gb/s
in a Rack

15 Apr 2013 24

Ry,

~ |

. Core
‘ ‘ Edge
99.9th percentile
by
L, heation (%) Hottest cluster:
o ~ 1000x more drops at
40% -~ the Edge, than Core.
30% - —
20% - —
10% - - 16 of 17 clusters:
0% | I .
Core Edge 0 drops in the Core.

Timescales: over 2 weeks,
99.9t" pcile = several minutes

15 Apr 2013 25

EyeQ’s Goal: Rate Guarantees for VMs in the Cloud

Customer specifies
capacity of the Alice’s Switch Bob’s Switch

virtual NIC.
ETLR.

Provider: assures near
dedicated performance.

Rate guarantees =>
Performance isolation

15 Apr 2013 26

The Big Picture: Resource Management

' e Infrastructure
Seftware Foundation pia(eTRle

Apache Mesos

At Twitter, AirBnB, Compute | SR | Network | openstack”
Conviva, etc. / A

Fair CPU EyeQ
Scheduling / fecource Pool \ Network Rate

Guarantees
[l l J

15 Apr 2013

27

Decentralized Scheduling

[

4)
ZGb/sQ Shim
_ J
4)
ZGb/sQ Shim
_ J
4)
SGb/SQ Shim
_ J

EyeQ Shim Layer
In the Trusted

Domain
(Hypervisor/NIC)

15 Apr 2013

(min) Rate

10Gb/s pipe Guarantees
-)
Q-

Shim

%

4)
\ Shim QSGb/s
\§ J

Decentralized Scheduling

~N

10Gb/s pipe

(min) Rate
Guarantees

Le

_

J

15 Apr 2013

J

4 N
QSGb/S

\ J

29

Decentralized Scheduling

4)
ZGb/s
g J
4)
ZGb/s
g J
4)
SGb/s
g J

15 Apr 2013

5Gb/s

5Gb/s

-

\
* 2Gb/s
RX
Module
SGb/s

J

4 N
QSGb/S

\ J

30

Decentralized Scheduling

4)

15 Apr 2013 31

Decentralized Scheduling

4)

15 Apr 2013 32

Work Conserving Allocations

1Gb/s

_\

ZGb/s

Module

SGb/s

5Gb/s

5Gb/s

8Gb/s

15 Apr 2013

L] ﬁe

Work Conserving Allocations

RX
Module

15 Apr 2013

Work Conserving Allocations

pare capacity

-

RX
Module

15 Apr 2013

Work Conserving Allocations

4)
ZGb/s@ 2.5Gb/s
E— i
\§ J
_ 5Gb/s
-
5Gb/s

15 Apr 2013

QSGb/s

/

4)
QSGb/s

- J

Transmit/Receive Modules

~N

Rate limit. 1G b/c
E— O Congestion detectors \ \
/ @ 2Gb/s 2

) 1Gb/ N
I / 8Gb/s

J

) 4)

Rate limit. QSGb/S

J - J

=
ZGb/sQ— i — e _ L_";)
&=

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
15 Apr 2013 37

Transmit/Receive Modules

~N RCP: Rate feedback (R) every 10kB
— (no per-source state needed)
ZGb/SQ-— Rate limit. | le/c
B N Congestion detectors \ N
J 2Gb/s 2
~N
@ 8Gb/s
. —é
ZGb/SQ—— Rate limit. o .
J ot /
) et)
- /SQ_ Qng .
J \§ J

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
15 Apr 2013 38

Transmit/Receive Modules

~N RCP: Rate feedback (R) every 10kB
— (no per-source state needed)
ZGb/SQ-— Rate limit. | le/c
B N Congestion detectors \ N
J 2Gb/s 2
~N
@ 8Gb/s
. —é
ZGb/SQ—— Rate limit. o .
J ot /
) et)
- /SQ_ Qng .
J \§ J

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
15 Apr 2013 39

Transmit/Receive Modules

~N RCP: Rate feedback (R) every 10kB
— (no per-source state needed)

Rate limit. §

))
y

Congestion detectors
2Gb/s
~N

J

~N

Rate limit. QSGb/S

J - J

g S
8Gb/s
. —é
ZGb/sQ— Rate limit. s &N @ ____

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
15 Apr 2013 40

Determining Rate

Determine one rate Ri so that utilisation matches allowed limits

C‘, . Util = Net Incoming Rate
® --._._) ::: . 3Gb/s (VM'’s limit)

Recompute _ .
Ri every 200us Rl <~ Rl

Aggressiveness parameter. Setto 0.5
15 Apr 2013 41

15 Apr 2013

Determining Rate

Start at line rate:

3Gb/s (VM’s limit)

42

Determining Rate
(distributed guessing)

l : >
@ = _Too high: try 3Gb/s t
@ ¢~ __ TNl 3Gb/s

Tiny feedback packets
sent to traffic sources

15 Apr 2013 43

15 Apr 2013

More guessing...

@. . Net Rate=9Gb/s

~

44

Continue guessing...

>
@. = _Too high: try 0.5Gb/s t
@. G

15 Apr 2013 45

15 Apr 2013

Oops...

@\ Net Rate=1.5Gb/s

~

46

Almost there

ﬁ.\t _Too low: try 1Gb/s

15 Apr 2013 47

Fixed point

>
@ . Net Rate=3Gb/s t

~

15 Apr 2013

15 Apr 2013

Continuous Scheduling

49

15 Apr 2013

Continuous Scheduling

50

Software Prototype

Linux Kernel Module (qdisc)
Windows Filter Driver (in VMSwitch)

* Non-intrusive: no changes to applications or
existing network stack. Works even with UDP!

e ~1700 lines of code “
Linux Kernel Module is Open-Source ™
* Full system and documentation at open source

http://jvimal.github.com/eyeq

* EyeQ’s rate limiters more efficient than today’s
rate limiters in Linux/Windows

15 Apr 2013 51

o
Does it work?

TCP: 6Gb/s
UDP: 3Gb/s

15 Apr 2013

52

Does it work?

TCP: 6Gb/s
UDP: 3Gb/s

9G;

71Gt
B8 tcp

5GH @@ udp \/M\/‘»i
o
— total

3Gt

ate

1Gt
-1 o\ LD a2

10 15 20 25 30
Time (s)

Without EyeQ

15 Apr 2013

| I

Does it work?

TCP: 6Gb/s
UDP: 3Gb/s
9G}
71Gt
Q, -8 tcp O
©5GH @@ udp \ { ®5G @@ udp
o o
— total — total
3G} : 3G}
1G} 1Gt
10 15 20 25 30 10 15 - 20 25 30
Time (s) Time (s)
Without EyeQ With EyeQ

15 Apr 2013 54

o —
Does it work?

TCP: 6Gb/s
UDP: 3Gb/s
9G} —
d Improves utilisation | _ _
Q, -8 tcp w o
§SG-0—0 udp : 5 udp
— total] — totpl
3G} - 3Gt

1Gt 1Gt
10 15 2 provides protection |tneis) © °°

Without EyeQ With EyeQ

15 Apr 2013 55

o —
Does it work?

TCP: 6Gb/s
UDP: 3Gb/s
9G} —
d Improves utilisation | _ _
Q, -8 tcp w o
§SG-0—0 udp : 5 udp
— total] — totpl
3G} - 3Gt

1Gt 1Gt
10 15 2 provides protection |tneis) © °°

Without EyeQ With EyeQ

15 Apr 2013 56

Close to Bare-Metal Latency?

Each server has

10Gb/s link
%
\. —
\U \
\J pr—<
\.
\ —
\.
] &
—

12 Client Pool

15 Apr 2013

\| S

4 Server Pool

57

Close to Bare-Metal Latency?

Each server has
10Gb/s link

External Load:
144k SET req/sec A

N —

AT
—V\\ _

12 Client Pool

15 Apr 2013

\J

Set 6kB objects
Load: 2.3Gb/s/server

4 Server Pool

58

Close to Bare-Metal Latency?

Each server has
10Gb/s link

External Load:

144k SET req/sec A

N —

- AT
\\

12 Client Pool

15 Apr 2013

—

\J

Set 6kB objects
Load: 2.3Gb/s/server

4 Server Pool

59

Close to Bare-Metal Latency?

Each server has
10Gb/s link

External Load:

144k SET req/sec A

N —

4 M
\\

12 Client Pool

15 Apr 2013

—

\J

Set 6kB objects
Load: 2.3Gb/s/server

4 Server Pool

60

Close to Bare-Metal Latency?

igzihbserl",elz has Set 6kB objects
/s lin Load: 2.3Gb/s/server

Q UDP bursty 5Gb/s
\
External Load: \—__/ 0.5sto 1server, chosen
144k SET req/sec amT) round robin. 0.5s sleep
between bursts.
— AT
—
SULE 1 —
UL AT
N\ e —
— W
—
12 Client Pool 4 Server Pool

15 Apr 2013 61

Close to Bare-Metal Latency?

igzihbserl",elz has Set 6kB objects
/s lin Load: 2.3Gb/s/server

Q UDP bursty 5Gb/s
\
External Load: \—__/ 0.5sto 1server, chosen
144k SET req/sec amT) round robin. 0.5s sleep
between bursts.
— AT
—
SULE 1 —
UL AT
N\ e —
— W
—
12 Client Pool 4 Server Pool

15 Apr 2013 62

Close to Bare-Metal Latency?

igzihbserl",elz has Set 6kB objects
/s lin Load: 2.3Gb/s/server

Q UDP bursty 5Gb/s
\
External Load: \—__/ 0.5sto 1server, chosen
144k SET req/sec amT) round robin. 0.5s sleep
between bursts.
— AT
—
SULE 1 —
UL AT
N\ e —
— W
—
12 Client Pool 4 Server Pool

15 Apr 2013 63

Close to Bare-Metal Latency?

Egz;hb;erlvelz has Set 6kB objects
slin Load: 2.3Gb/s/server

; Baseline (Linux 3.4) 98us 666us 144kreq/s
Without Interference + EyeQ 100us 630us 144kreq/s
With Interference 4127us >10°s 144kreq/s
With Interference + EyeQ 102us 750us 144kreq/s

12 Client Pool 4 Server Pool

15 Apr 2013 64

Thank you!

EyeQ: a system to partition

bandwidth within a data center
in a simple and predictable way

0.

open source

http://jvimal.github.com/eyeq
jvimal@stanford.edu

15 Apr 2013

15 Apr 2013

66

Rate Limiter Memory Overhead

112B + NCUPS * 104B
* 8 CPUs: ~0.9kB
* 16 CPUs: ~1.8kB

* Scales linearly with number of IP destinations,
not connections (struct sock: 648B)

