EyeQProtecting Network Performance

Protecting Network Performance in the Cloud

Vimal

Mohammad Alizadeh Balaji Prabhakar David Mazières

Changhoon Kim Albert Greenberg

Once upon a time...

Once upon a time...

15 Apr 2013

2

Once upon a time...

Performance Unpredictability

Graph (Sun Apr 14 12:43:20 EDT 2013 to Mon Apr 15 14:00:00 EDT 2013):

http://amistrongeryet.com/op_detail.jsp?
op=gae_db_readCachedHandles_1&hoursAgo=24

15 Apr 2013 6

99th percentile latency: Who cares?

Web services: each request touches 10s to 100s of servers Worker 1 Worker 2 Request **Frontend** Internet Worker 3 Internal Webserver Request/resp. Response Worker N Web Response time depends on

As N increases, 99th percentile latency really matters

the slowest worker.

Network Congestion Kills Predictability

Is this how we deal with variability?

Is this how we deal with variability?

Why We Moved Off The Cloud

The cloud's intractable problem

... is variable — no, highly variable — performance.

http://code.mixpanel.com/2011/10/27/why-we-moved-off-the-cloud/

Give up on cloud, move to dedicated

Is this how we deal with variability?

The cloud's intractable problem

... is variable — no, highly variable — performance.

http://code.mixpanel.com/2011/10/27/why-wemoved-off-the-cloud/

5 Lessons We've Learned Using AWS

... in the Netflix data centers, we have a high capacity, super fast, highly reliable network. This has afforded us the luxury of designing around chatty APIs to remote systems. AWS networking has more variable latency.

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

Overhaul apps to deal with *variability*

Congestion is notorious you when you can't "see" it

Bursty UDP session:

2.5Gb/s

ON: 5ms

OFF: 15ms

Congestion is notorious you when you can't "see" it

OFF: 15ms

Congestion is notorious you when you can't "see" it

ON: 5ms OFF: 15ms

Strawman: Rate Limiting

Strawman: Rate Limiting

Strawman: Rate Limiting

Recap...

- Bandwidth contention
 - Can occur in a few milliseconds!
 - Happens even if tenants don't talk to each other
 - Invisible on 5 minute logs!
- Cannot trust tenants at all
 - Easy to grab more bandwidth simply by blasting traffic (UDP)
- Naïve rate limiting not enough
 - VMs can gang up and blast traffic

Congestion Study on Windows Azure

99.9th percentile utilization (%)

Timescales: over 2 weeks, 99.9th pcile = several minutes Hottest cluster: 1000x more drops at the Edge, than Core.

16 of 17 clusters:0 drops in the Core.

15 Apr 2013 25

EyeQ's Goal: Rate Guarantees for VMs in the Cloud

Provider: assures near dedicated performance.

Rate guarantees => Performance isolation

15 Apr 2013 26

The Big Picture: Resource Management

15 Apr 2013

27

Per-destination rate limiters: only if dest. is congested... bypass otherwise

15 Apr 2013

15 Apr 2013

38

15 Apr 2013

Determining Rate

Determine one rate Ri so that utilisation matches allowed limits

Aggressiveness parameter. Set to 0.5

Determining Rate

Determining Rate (distributed guessing)

Tiny feedback packets sent to traffic sources

More guessing...

Continue guessing...

Oops...

Almost there

Fixed point

Continuous Scheduling

Continuous Scheduling

Software Prototype

Linux Kernel Module (qdisc) Windows Filter Driver (in VMSwitch)

- Non-intrusive: no changes to applications or existing network stack. Works even with UDP!
- ~1700 lines of code

Linux Kernel Module is Open-Source

- Full system and documentation at <u>http://jvimal.github.com/eyeq</u>
- EyeQ's rate limiters more efficient than today's rate limiters in Linux/Windows

TCP: 6Gb/s UDP: 3Gb/s

TCP: 6Gb/s UDP: 3Gb/s

Without EyeQ

TCP: 6Gb/s UDP: 3Gb/s

Without EyeQ

With EyeQ

TCP: 6Gb/s UDP: 3Gb/s

Without EyeQ

With EyeQ

TCP: 6Gb/s UDP: 3Gb/s

Without EyeQ

With EyeQ

12 Client Pool

4 Server Pool

UDP bursty 5Gb/s 0.5s to 1 server, chosen

round robin. 0.5s sleep

12 Client Pool

4 Server Pool

15 Apr 2013 61

Set 6kB objects Load: 2.3Gb/s/server

UDP bursty 5Gb/s 0.5s to 1 server, chosen round robin. 0.5s sleep between bursts.

12 Client Pool

4 Server Pool

Set 6kB objects Load: 2.3Gb/s/server

UDP bursty 5Gb/s 0.5s to 1 server, chosen round robin. 0.5s sleep between bursts.

12 Client Pool

4 Server Pool

15 Apr 2013 63

12 Client Pool

4 Server Pool

Thank you!

EyeQ: a system to partition bandwidth within a data center in a simple and predictable way

http://jvimal.github.com/eyeq
 jvimal@stanford.edu

Rate Limiter Memory Overhead

112B + NCUPS * 104B

- 8 CPUs: ~0.9kB
- 16 CPUs: ~1.8kB
- Scales linearly with number of IP destinations, not connections (struct sock: 648B)